Finished Projects

This page contains an overview of finished projects.
An overview of current projects can be found here.


BRIDGE – Bridging resources and agencies in large-scale emergency management

The ultimate goal of BRIDGE is to increase the safety of citizens by developing technical and organisational solutions that significantly improve crisis and emergency management in the EU Member States. A BRIDGE platform will provide technical support for multi-agency collaboration in large-scale emergency relief efforts. The key to this is to ensure interoperability, harmonization and cooperation among stakeholders on the technical and organisational level.

Burger Alert Real Time (BART)

Burger Alert Real Time, BART


Partners: TU Delft, TNO, CGI, Dutch Police, City of the Hague

The aim of the project is to develop an innovative platform in which citizens, private organizations, the police and the municipality participate to deal with safety and security issues in the neighbourhood. Providing a means for citizens to influence the quality of their own living environment and security, together with the municipality and the police, to increase social cohesion, and reduce the level and amount of crime, is the focus. Trust, presence and relationships are prerequisites for citizen participation. TUDelft focuses on understanding the current state of the neighbourhood, and designing interventions with which to increase citizen participation over-time, when no emergencies occur, as well as just-in-time in emergency situations that require immediate follow-up.

TU Delft staff: prof. dr. Frances Brazier, dr. Tina Comes, dr. Stephan Lukosch

PhD student: Ir. Geertje Slingerland, MSc

NL Net

Design and management of networked Autonomous Systems


The world is distributed over time and place, as are most of today’s systems. Systems are becoming more autonomous, configurations more complex, the environments in which they operate more open, distributed and dynamic. The sheer complexity of most systems in today’s current practice mandate new solutions. Self-management is the solution for complex distributed and networked autonomous systems. The 4 main research questions this project addresses are:

  1. Which communication structures are most effective within and between levels within distributed networked autonomous systems?
  2. Which control structures are most effective within and between levels within distributed networked autonomous systems?
  3. Which aggregation structures are most effective to monitor and manage distributed networked systems?
  4. Which commitments are needed within and between levels within distributed networked autonomous systems to be able to manage such systems? Which interaction?

This project’s goal is to further fundamental understanding of enabling technologies for the design and management of such complex autonomic systems based on applied research on applicable architectures, policies, and mechanisms, implemented as middleware support for development and execution of run-time systems.


SamenMarkt: Restoring trust in the horticultural fresh food market using multi-agent system technology

Partners: TU Delft, Hogeschool InHolland, LEI Wageningen UR, Advisory Board, and many others.

samenmarkt 1Samenmarkt 2Samenmarkt 3

In the horticultural fresh food supply chain network in the Netherlands a crisis is emerging. The market is out of balance and many growers are facing bankruptcy. Trust between participants in the supply chain network has decreased to an ever low. This project identifies design requirements how trust can be restored in new systems. It introduces the concept SamenMarkt®, a participatory system in which multi-agent system technology enables distributed price negotiation, distribution and communication between producers, retailers and consumers. Distributed multi-agent simulation and emulation create the basis for stakeholder- and participant awareness and involvement in the food market. SamenMarkt® aims to provide a solution space for the emerging global food challenges.

TU Delft staff involvement: dr. Michel Oey, dr. Caroline Nevejan, and prof. dr. Frances Brazier

PhD student: Coen Hubers


Stable and scalable decentralized power balancing systems using adaptive clustering

The NWO URSES project Stascade: Stable and scalable decentralized power balancing systems using adaptive clustering

Energy systems are in transition. Whereas in the past, energy supply was determined by demand, in future, demand will need to follow supply. Changing prices is a means to this end, via markets in which bids for demand and/or supply determine the market price for a specific period of time.
Such markets, however, have their drawbacks. An important drawback is that markets can typically be highly dynamic, even with disruptive or chaotic behaviour. In addition, current centralised markets are not designed to deal with local network failures. These factors influence the stability and predictability of the energy system. Therefore, there is a need for decentralized, stabilizing, and scalable approaches to balance supply and demand (S/D) of energy.
This proposal focuses on the design of distributed coordination and market mechanisms to this purpose. Distributed dynamic clusters of synergetic consumers and producers are our basic construct. Clusters are designed to coordinate local load balancing for varying periods of time amongst consumers and producers, typically for substantially longer periods than considered in markets. Local load balancing in clusters thus allows for novel, more reliable solutions for global load balancing and can be used in conjunction with (current or novel) external market mechanisms. In addition, clusters are dynamic and can adapt to changing situations, including network failures. This project designs novel models, techniques and approaches for dynamic clustering and market mechanisms for energy S/D balancing, in a cooperation between engineering systems, computer science, and electrical engineering researchers, and network operator, ICT, and business consultants.

Phd student: Nina Voulis, MSc
Supervisors: Dr. Martijn Warnier, prof. dr. Frances Brazier

Comments are closed.